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Abstract

We compare several approaches to uncer-
tainty propagation that have been used in the
literature to formulate the uncertainty in a dy-
namical system governed by ordinary differen-
tial equations. Specifically we focus on the evo-
lution of probability density functions of the as-
sociated stochastic processes, and discuss their
applications in different fields.

1 Introduction

Uncertainty is ubiquitous in physics, chem-
istry, bioscience and especially in the social sci-
ence. It is often classified into two types. One
is epistemic (or reducible) uncertainty, which
can possibly be reduced by improved measure-
ments. The other is aleatory (or irreducible)
uncertainty, which is the result of intrinsic
variability/stochasticity of the system. Uncer-
tainty propagation through a dynamic system
has enjoyed considerable research interests dur-
ing the past decade due to the wide applica-
tions of mathematical models in studying the
dynamical behavior of the system.
In this paper, we consider two types of dif-

ferential equations in the presence of uncer-
tainty. One is stochastic differential equations
(SDEs), a classification reserved for differential
equations driven by white noise. The other is
random differential equations (RDEs), a clas-
sification used for differential equations driven
by colored noise. Specifically, we focus on the
evolutions of the probability density functions
of stochastic processes resulting from SDEs and
RDEs, and their applications in different fields.

Unless otherwise indicated, a capital letter is
used to denote a random variable, a bold capi-
tal letter is for a random vector, and their corre-
sponding small letters are for their realizations
throughout.

2 Stochastic Differential Equations

White noise is widely used in practice to ac-
count for the randomness in the inputs of sys-
tem governed by differential equations, espe-
cially in the case where one has little knowl-
edge about the precise nature of the noise. In
this section, we consider stochastic differential
equations driven by Gaussian white noise. Note
that stochastic differential equations can be in-
terpreted in either Itô or Stratonovich sense,
and the difference between their solutions dis-
appears if the drift term is corrected based on
the so-called Wong-Zakai theorem (e.g., see [11,
Section 3.4]). Hence, in this section we focus
our discussions on the Itô stochastic differential
equations.
Consider the following Itô stochastic differen-

tial equations

dX(t) = g(t,X(t))dt+ σ(t,X(t))dW(t),

X(0) = X0,

(2.1)
where X = (X1, X2, . . . , Xn)

T , g =
(g1, g2, . . . , gn)

T is a nonrandom n-dimensional
function of t and x, σ is a nonrandom n × l

matrix function of t and x, W(t) is an l-
dimensional standard Wiener process indepen-
dent of the random initial vector X0. In addi-
tion, we assume that g and σ satisfy conditions
that guarantee the existence and uniqueness of
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solutions to initial value problem (2.1).
Itô stochastic differential equations are of-

ten found useful in financial mathematics as it
only takes into account the information about
the past (for example, in modeling the stock
price, the only information one has is about
past events). Itô stochastic differential equa-
tions have also been used in describing mech-
anisms of climate variability. For example, it
was used in [20] to describe the interactions
between the atmosphere temperature and the
ocean’s surface temperature.
The evolution of the probability density func-

tion of the solution to (2.1) is described in the
following theorem.

Theorem 2.1. Assume that X0 has probability
density function p0, and X(t) satisfies (2.1).
Then the probability density function p of X(t)
satisfies

∂

∂t
p(t,x) +

n
∑

k=1

∂

∂xk

(gk(t,x)p(t,x))

=
1

2

n
∑

k,j=1

∂2

∂xk∂xj

[

(

σ(t,x)σT (t,x)
)

kj
p(t,x)

]

(2.2)
with initial condition p(0,x) = p0(x). Here
(

σ(t,x)σT (t,x)
)

kj
denotes the (k, j)th element

of matrix σ(t,x)σT (t,x).

Equation (2.2) is often referred to as Fokker-
Planck equation or forward Kolmogorov equa-
tion, and is important to the fields of chemistry
and thermodynamics. Fokker-Planck equations
have also been used in the literature (e.g., [3, 8])
to describe the population density in a size-
structured population where the growth pro-
cess is a diffusion process satisfying the Itô
stochastic differential equation. There are sev-
eral approaches that can be used to derive the
Fokker-Planck equation. One approach is to
employ expansion methods such as those in
[14, Section 8.1] employed by Moyal in 1949.
Another method is based on the principle of
preservation of probability density functions
(e.g., see [10]).

3 Random Differential Equations

Colored noise has been observed in many set-
tings such as astronomy, acoustic equipment
and electronic devices. Hence, random differ-
ential equations have gained considerable re-
search interest in the past decade, especially
the efforts on computational methods (inter-
ested readers can refer to [23] for discussions
on widely used methods such as Monte Carlo
methods, stochastic Galerkin methods and
probabilistic (or stochastic) collocation meth-
ods). In practice, one often decomposes and
truncates the colored noise by a finite linear
combination of uncorrelated random variables
(e.g., using a Karhunen–Loève expansion) for
uncertainty quantification. Hence, in this sec-
tion we focus our discussions on those random
differential equations with random inputs char-
acterized by finite dimensional random vectors.

3.1 Differential Equations with Ran-

dom Initial Conditions

In this section, we consider the evolution of
probability density function of the solution to
a system of ordinary differential equation with
random initial conditions

ẋ = g(t,x), x(0) = X0, (3.1)

where x = (x1, x2, . . . , xn)
T , and g =

(g1, g2, . . . , gn)
T is an n-dimensional nonran-

dom function of t and x. Here X0 is an n-
dimensional random vector. Equation (3.1)
is referred to as a crypto-deterministic system
(e.g., see [11, 14, 18]), and has been proven
useful in wide applications such as classical
statistical mechanics, statistical thermodynam-
ics, kinetic theory and biosciences. Depending
on the applications, the uncertainty in initial
conditions could be classified as either epis-
temic uncertainty (e.g., the uncertainty is due
to the measurement error) or aleatory uncer-
tainty (e.g., individuals have different initial
size).

Theorem 3.1. [18, Theorem 6.2.2] Assume
that (3.1) has a mean square solution x(t;X0).



Then the probability density function of the so-
lution x(t;X0) satisfies

∂

∂t
p(t,x) +

n
∑

k=1

∂

∂xk

(gk(t,x)p(t,x)) = 0,

(3.2)
with initial condition p(0,x) = p0(x), where p0
is the probability density function of X0.

The above result is often referred to as Li-
ouville’s “theorem”, and the resulting equation
(3.2) is often called Liouville’s equation. Liou-
ville’s “theorem” is a key result in statistical
mechanics and statistical thermodynamics. It
is worth noting that Liouville’s equation with
n = 3 is the well-know equation of continuity in
continuum mechanics. There are several meth-
ods that can be used to derive this equation.
One is from a probabilistic point of view us-
ing the concept of characteristic functions (e.g.,
see [18, p147]) following the derivation of Kozin
[12] in 1961. Another method is based on the
principle of preservation of probability density
function [16, pages 363-364]. In addition, we
see that (3.1) is a special case of Itô stochastic
differential equation (2.1) with σ ≡ 0. Hence,
if we assume that g satisfies the conditions for
existence and uniqueness of solutions of (2.1),
then we can use the same arguments as those
for deriving the Fokker-Planck equation to de-
rive Liouville’s equation.

3.1.1 Application of Liouville’s Equa-

tion in Population Dynamics

We observe that the Liouville equation (3.2)
with g1 ≡ 1 is a special case of a model given
by Oster and Takahashi in 1974 [15] 1

∂

∂t
u(t,x) +

∂

∂x1

u(t,x)

+
n

∑

j=2

∂

∂xj

(gj(t,x)u(t,x)) + d(t,x)u(t,x) = 0

(3.3)
without mortality (d = 0). This model
is used to describe the population density

1The connection between the Liouville equation and
(3.3) was recognized by Oster and Takahashi in the case
of zero mortality and constant growth rates gi, i = 2, . . . , n.

u(t,x) in a spatially homogeneous population
where individuals are characterized by x =
(x1, x2, · · · , xn)

T with x1 denoting the chrono-
logical age and x2, · · · , xn representing some
physiological variables such as mass, volume,
chemical composition, and any other quantities
having an influence on individual’s growth and
mortality rates, and g(t,x) and d(t,x) are the
growth and mortality rates of individuals with
chronological age x1 and physiological variables
x2, . . . , xn at time t, respectively.
Equation (3.3) includes a number of well-

known structured population models as special
cases. Specifically, the model with only chrono-
logical age involved, that is,

∂

∂t
u(t, x) +

∂

∂x
u(t, x) + d(t, x)u(t, x) = 0

is the age-structured population model given by
Mckendrick [13] in 1926 and Von Foerster [21]
in 1959. Equation (3.3) with n = 2,

∂

∂t
u(t,x) +

∂

∂x1

u(t,x) +
∂

∂x2

(g2(t,x)u(t,x))

+d(t,x)u(t,x) = 0,
(3.4)

is the age-size structured population model de-
veloped by Sinko and Streifer [17] in 1967 (with
x2 being some physiological variable), and it is
also the model given by Bell and Anderson [9]
in 1967 for cell populations (with x2 denoting
the volume of the cell). Equation (3.4) without
the second term, that is,

∂

∂t
u(t, x) +

∂

∂x
(g(t, x)u(t, x))

+d(t, x)u(t, x) = 0,
(3.5)

is often referred to as the Sinko-Streifer model
or classical size-structured population model.
Here x is the structure variable, which may
represent weight, length, volume, chronological
age (equation (3.5) becomes an age-structured
population model in this case), caloric content,
maturity, etc, depending on the applications.
Based on the above discussions, we see that

all the linear structured population models pre-
sented in this section can be associated with
some stochastic process, which is obtained due
to the variability in the initial size of individu-
als in the population.



3.2 Differential Equations with Ran-

dom Model Parameters and Ran-

dom Initial Conditions

In this section, we consider the system of ran-
dom differential equations

ẋ = g(t,x;Z), x(0) = X0, (3.6)

where x = (x1, x2, . . . , xn)
T , g =

(g1, g2, . . . , gn)
T is an n-dimensional nonran-

dom function of t and x, Z is an m-dimensional
random vector with values in Z, and X0 is an
n-dimensional random vector.
Equation (3.6) has wide applications in

physics and bioscience to account for hetero-
geneity of the material or the variation between
individuals (and the uncertainty is aleatory in
this case). For example, a system of ordinary
differential equations are often used to model
the HIV dynamics for any specific individual,
but the model parameters vary across the pa-
tients as the clinical data shows a great deal of
variability among HIV patients (e.g., see [2, 7]).
Equation (3.6) can also be used to describe the
uncertainty arising from the parameter estima-
tion error, and in this case the uncertainty is
epistemic.

3.2.1 Evolution of Joint Proba-

bility Density Function of

(x(t;X0,Z),Z)
T

In this section, we consider the evo-
lution of probability density functions of
(x(t;X0,Z),Z)

T . Let x̃ = (x, z)T . Then (3.6)
can be rewritten as

˙̃x = g̃(t, x̃), x̃(0) = (X0,Z)
T . (3.7)

Here g̃(t, x̃) =

[

g(t,x; z)
0m

]

, where 0m is an

m-dimensional column vector with all the el-
ements being zeros. Hence, Theorem 3.1 can
be applied to (3.7) to obtain the following re-
sult on the evolution of joint probability density
functions of the solution to (3.7).

Theorem 3.2. [19, Theorem 1] Assume that
(3.6) has a mean square solution x(t;X0,Z).

Then the joint probability density function
ϕ̃X,Z(t,x, z) of x(t;X0,Z) and Z satisfies

∂

∂t
ϕ̃X,Z(t,x, z)

+
n

∑

k=1

∂

∂xk

(gk(t,x; z)ϕ̃X,Z(t,x, z)) = 0,

(3.8)
with initial condition ϕ̃X,Z(0,x, z) =
ϕ̃0

X,Z(x, z), where ϕ̃0

X,Z is the joint probability
density function of X0 and Z.

Observe that (3.7) is a special case of stochas-
tic differential equations with diffusion coeffi-
cient being zeros. Hence, we can also use the
same arguments for deriving the Fokker-Planck
equation to derive (3.8).
Given the joint probability density function

ϕ̃(t,x, z), we can obtain the probability density
function p(t,x) for x(t;X0,Z) given by

p(t,x) =

∫

Z

ϕ̃(t,x, z)dz. (3.9)

3.2.2 Evolution of Conditional Prob-

ability Density Function of

x(t;X0,Z) Given the Value z of Z

In this section, we derive the conditional
probability density function of x(t;X0,Z) given
the value z of Z. Note that the conditional
probability density function ϕ(t,x; z) is

ϕ(t,x; z) =
ϕ̃X,Z(t,x, z)

ϕ̃Z(z)
, (3.10)

where ϕ̃Z(z) denotes the probability density
function of Z. Hence, by (3.8) and (3.10) we
find ϕ(t,x; z) satisfies

∂

∂t
ϕ(t,x; z) +

n
∑

k=1

∂

∂xk

(gk(t,x; z)ϕ(t,x; z)) = 0,

(3.11)
with initial condition ϕ(0,x; z) = ϕ0(x; z),
where ϕ0(x; z) is the probability density func-
tion of initial condition X0 given Z = z.
Observe that for any given value z of Z sys-

tem (3.6) is crypto-deterministic. Hence, by
using Liouville’s equation (3.2) the probabil-
ity density function ϕ(t,x; z) for the solution



x(t;X0, z) to (3.6) with given value z of Z sat-
isfies (3.11). Thus, we can derive evolution
of the conditional probability density function
ϕ(t,x; z) directly from Liouville’s equation.
Given the conditional probability density

function ϕ(t,x; z), the probability density func-
tion p(t,x) of x(t;X0,Z) is given by

p(t,x) =

∫

Z

ϕ(t,x; z)ϕ̃Z(z)dz. (3.12)

We remark that the scalar case of (3.11)
along with some proper boundary and ini-
tial conditions along with (3.12) have been
used to describe the population density in
a size-structured population, where the en-
tire population is partitioned into subpopula-
tions with each subpopulation having its own
growth rate g(t, x; z). This model, referred
to as growth rate distributed size-structured
(GRDSS) population model, was first formu-
lated in [1, 6] in 1986, and has been success-
fully used to model mosquitofish population in
the rice fields, where the data exhibits both
bimodality and dispersion in size as time in-
creases (e.g., see [1]). In addition, this model
was also used to model the early growth of
shrimp populations, which exhibits a great deal
of variability in size as time evolves even though
the shrimp begin with approximately similar
size [3, 4]. Based on the above discussions, we
see that the GRDSS model can be associated
with some stochastic process, which is obtained
due to the variability in the individual’s growth
rate and also the variability in the initial size
of individuals in the population. This is made
precise in [5, 8].

4 Concluding Remarks

In this note we consider the evolution of prob-
ability density functions of the solutions of Itô
SDEs and RDEs as well as their applications
in different fields. Even though SDEs and
RDEs are quite different in nature (one driven
by white noise while the other driven by col-
ored noise), it was shown in [8] that there are
classes of Itô SDEs with solutions having the

same probability density functions at each time
t as those for the solutions of a related corre-
sponding RDE. More precisely, it is shown how
to map the SDE to a corresponding RDE and
conversely. In addition, based on these point-
wise equivalence results it was demonstrated
in [5] that the solution for the GRDSS model
can be used to approximate the solution of
Fokker-Planck equation (which is difficult to
solve when the drift dominates the diffusion,
the case of primary interest in many cases).
However, it should be noted that the stochas-
tic processes obtained by these SDEs and their
corresponding RDEs are different as their co-
variance functions are not the same (see [8] for
more details).
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